〈設備名称〉ガス吸着量測定装置

〈**管理担当者**〉秋田大学大学院 工学資源学研究科 電気電子工学専攻 准教授 熊谷 誠治

〈設備構成〉

名称	型番
1. 測定部本体	AUTOSORB-iQ-C-AC
2. 熱伝導検出部	AUTPSORB-1-C用TCD検出器※
3. AUTOSORB-1-C用四重極質量分析計	
Mass接続装置	
四重極質量分析計 プリズマ	QMS200
4. 解析・制御装置	

※2. 熱伝導検出部において、1.本体型番(AUTOSORB-iQ)と異なり AUTPSORB-1-C用となっている理由.

→AUTPSORB-1-C用となっているが、AUTOSORB-iQ等全ての測定部に対応可.(本体新旧型番における整合問題).なお、当該メーカーの熱伝導検出部は当機器1種類のみで、性能別の検出部は無い.

〈測定原理・その他の詳細〉

活性炭やゼオライトなど多孔体試料に気体を吸着させ、それらの吸脱着等温線を測定し、比表面積、細孔容積、細孔分布などを得ることができる。多孔体試料に吸着させる気体は窒素ガスが一般的で、通常それが使用されるが、二酸化炭素、アルゴン、クリプトン、水素、炭化水素ガスなどの気体も利用可能である。

〈使用料(税抜)〉 390円/時

〈設置場所〉

秋田大学

ベンチャーインキュベーションセンター 102研究室

〈使用例〉多孔体試料の窒素(N₂),二酸化炭素(CO₂),水素 (H₂)等気体の吸着特性を評価.もみ殻等木質系バイオマス由来高機能活性炭のエネルギー貯蔵材料の開発において,活性炭やゼオライトなどの多孔体の物質吸着・脱離特性を評価するために使用.